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The Delaunay tessellation of several sets of real and simplified model protein structures has been used to
explore graph theoretic properties of residue contact networks. The system of contacts defined by residues
joined by edges in the Delaunay simplices can be thought of as a graph or network and analyzed using
techniques from elementary graph theory and the theory of complex networks. Such analysis indicates that
protein contact networks have small world character, but technically are not small world networks. This
approach also indicates that networks formed by native structures and by most misfolded decoys can be
differentiated by their respective graph properties. The characteristic features of residue contact networks can
be used for the detection of structural elements in proteins, such as the ubiquitous closed loops consisting of
22–32 consecutive residues, where terminal residues are Delaunay neighbors.
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I. INTRODUCTION

Many problems in protein structure analysis can be ad-
dressed using the representation of a protein structure as a
residue contact map �for example �1–3��. In recent years a
number of works have focused on the study of the topology
and biological significance of networks formed by residues
in contact �4–9�. In most of these works the contacts between
residues are defined based on a pairwise residue separation in
three-dimensional space, frequently relying on a somewhat
arbitrary value of distance cutoff. In this paper we describe
residue contact networks defined in a more robust way with
Delaunay tessellation. We characterize the graph topology of
these networks and show its applicability for identifying spe-
cific structural elements in protein architecture and its lim-
ited ability to discriminate between native and misfolded
protein structures.

A. Delaunay tessellation of protein structures

A method of partitioning the space between a set of points
known as Delaunay tessellation is gaining popularity in vari-
ous protein structure analysis applications �7,10,11�. The
analysis can be summarized in the following way. The pro-
tein is abstracted to a set of points. A point can correspond to
an atom, a collection of atoms, or an entire residue. In the
single point per residue representation, the coordinates of the
point can be those of the � carbon, � carbon, or the center of
mass of the side chain. In this work we use a single point per
residue representation, where the points are located at
�-carbon atoms. These points are joined by edges �Fig. 1� in
a unique way to form a set of nonoverlapping, irregular,
space-filling tetrahedra defined by the Delaunay simplices
�12�. The tetrahedra have the property that the sphere on the
surface of which all four vertices reside does not contain a
vertex from any other tetrahedron �the empty sphere prop-
erty�. Residues joined by a Delaunay simplex edge are natu-
ral nearest neighbors in a well-defined sense �12�. The analy-

sis of statistical characteristics of the tessellated protein
structures has been used in fold recognition �13–15�, for
structure alignment and comparison �16–18�, as a way to
identify cavities in the surface of a protein that could be
potential binding pockets �19�, to study the stability and ac-
tivity effects of point mutations �20,21�, to define structural
motifs �22–25�, and to assign secondary structure �26�.

A four-body statistical contact pseudopotential derived
from Delaunay tessellation has been reported previously
�13,14�. With this potential, the score of some particular
amino acid quadruplet �i , j ,k , l� is defined as

qijkl = log10
f ijkl

caiajakal
�1�

where f ijkl is the observed frequency of simplices with amino
acid types i , j ,k, and l at their vertices in a large nonredun-
dant training set S; ai, aj, ak, and al are the observed frequen-
cies of the individual amino acid types in S; and c is a com-
binatorial factor. Variations of this potential have been
successfully applied to fold recognition �14,21� and the
analysis of protein stability �15� and activity �20�.

B. Properties of graphs and networks

A graph or network is a collection of nodes joined by
edges �27,28�. In a weighted graph, an edge has a number
weight associated with it denoting, for instance, physical dis-
tance between the nodes it connects or the relative difficulty
in traversing the edge. In an unweighted graph, all edges are
equivalent—one can arbitrarily assign them all weight 1. A
directed graph has edges that can only be traversed in one
direction. An undirected graph has edges that can be tra-
versed in both directions. A connected graph is one in which
it is possible to go between any pair of nodes via a path
through a series of edges and other nodes. A completely con-
nected graph is one where every node is directly connected
by an edge to every other node. All networks considered here
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are undirected, unweighted, and connected. The order of a
network is the number of nodes N it contains. The degree k
of a node in an undirected graph is the number of edges
impinging on it, and in a chemical context, this number is
also called the coordination number. It should be noted that k
will be used to refer to both the average degree of a whole
network and also the degree of a single node. Context should
make the meaning clear.

A minimum path between nodes i and j is one for which
the sum of weights of the edges along the path is smallest
from among all possible paths. The minimum path length Lij
between nodes i and j �also known as the chemical distance�
is the sum of the weights along a minimum path. In the case
described here, edges have weight 1, and a minimum path is
one for which the fewest edges are traversed. The character-
istic path length L of a network is the average of the mini-
mum paths between all node pairs i , j, where i� j. The char-
acteristic path length will also be referred to here as the mean
minimum path length. In general, there are many paths be-
tween distinct nodes i and j that have the minimum path
length. These paths are called geodesics �29�.

Some classes of networks have the clustering property,
which means that two nodes which are both joined by edges
to a third, are more likely to also be joined to each other than
are two nodes picked at random �30�. In such networks, there
are well-defined neighborhoods—subsets of nodes tending to
be connected to each other and tending not to be connected
to other neighborhood subsets. The clustering coefficient of a
node Cn is the number of actual edges En between neighbors
of node n divided by the number of possible connections
between those neighbors: Cn=2En / �k�k−1��, where k is the
degree of node n. The clustering coefficient C for the entire
network is the average of all the Cn.

Let gij�v� be the number of geodesics between nodes i and
j which pass through node v where i� j�v. Let gij be the
number of all geodesics between i and j. Now define the
ratio of the number of geodesics between i and j which pass
through v to the total number of geodesics between i and j as
bij�v�=gij�v� /gij. The betweenness centrality �29� of node v,
denoted Bv, is then defined as

Bv =
�i�j,j�v,i�v

bij�v�

bmax
, where �2�

bmax =
�N − 1��N − 2�

2
and N = number of nodes.

The betweenness centrality is often abbreviated as the be-
tweenness and measures the tendency of a node to be on
minimum paths between other pairs of nodes. Note that bmax
is a normalizing factor to keep betweenness in the range
�0,1�. It is the maximum possible value of bij�v�, which oc-
curs when the network is in a star configuration with v in the
center surrounded by all the other nodes which are all con-
nected to v, but not connected to each other �29�. The mini-
mum value of bij�v� is 0, as can happen for instance, when
the degree of v is 1. Also note that betweenness is a property
of an individual node, not a whole network.

Historically, graphs and networks have been divided into
two extreme classes: regular and random �31,32�. In a regu-
lar network, each node has the same degree. Examples would
be square or cubic lattices. A random graph is simply a col-
lection of N nodes with edges connecting pairs of nodes with
an independent probability p �33�. Such graphs have been
very extensively studied. For example it is known that large
random graphs have Poisson degree distributions �34�. For
regular networks, C=3�k−2d� /4�k−d� and L�N1/d where k
is the coordination number and d is the dimension in which
the network exists �32,35�. Random networks have C�k /N
and L� ln�N� / ln�k� �32�. In other words, regular graphs have
comparatively large C and �at least for small d� large L,
whereas sparse random graphs have small C and small L.

A class of networks, called small world networks, having
properties of both regular and random networks has been
characterized �30�. Small world networks have short path
lengths with L� ln�N� / ln�k� like random networks, but also
have strong local clustering with C�Cregular. In other words,
in a small world network there are well-defined neighbor-
hoods where nodes tend to have mutual neighbors, like a
regular graph, but one can traverse the graph in only a few
moves as with a random graph. Such networks have since
been found to be ubiquitous in nature �30,31�. Another class
of networks of current interest, also ubiquitous in the real
world, are scale-free networks �36� characterized by a degree
distribution that follows a power law with exponent �
and, for some values of �, a characteristic path length
L� ln�ln�N�� �ultrasmall world� �37�.

C. Graph theoretic view of networks formed by inter-residue
contacts in proteins

Here we model a protein structure as a network where
nodes represent residues and unweighted edges represent the
presence of putative interactions between residues. We call
such networks residue contact networks or contact graphs
and have analyzed a number of them, derived from real and
model protein structures. Contact network analysis has been
applied to molecular systems for a long time. Network analy-
sis of molecules goes back at least to Wiener �38� who
showed in 1947 a relationship between path length and the
boiling points of paraffins. Recent papers have included de-
tailed analysis of protein contact networks from a graph
theoretic perspective. For instance, Vendruscolo et al. have

FIG. 1. Delaunay tessellation of crambin. Spheres C� atoms.
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reported that networks formed by protein inter-residue con-
tacts, where contact is defined as C� separation �8.5 Å,
have small world properties and that residues with high net-
work betweenness make important contacts in model folding
intermediates �8�. Using the characteristic path length of con-
tact networks, Dokholyan et al. have reported being able to
classify hypothetical “pretransition” and “post-transition”
structures which could not be distinguished via rmsd devia-
tion, solvent accessible area, or radius of gyration �9�. Atil-
gan et al. have shown that the average path length of a resi-
due correlates with the amplitude of small fluctuations about
the equilibrium position of that residue �39�. In this work we
analyze residue contact networks where, instead of contact
being defined by simple proximity, residues are considered to
be in contact when a Delaunay edge joins them in the tessel-
lation. Protein structures are stabilized in part by a large
number of short range, non-covalent interactions and ideally
graph edges should correspond to these real interactions.
However, the tessellation of a protein chain can result in long
simplex edges, particularly edges joining surface residues. It
is sensible to exclude from our contact networks these “long
edge” connections since they will not correspond to real
physical interactions. Figures 2�a�–2�c� shows mean degree,
characteristic path length, and clustering coefficient as a
function of edge length cutoff for three representative sample
structures. It is reasonable to choose a cutoff where the plots
of all three have started to level off, which means a cutoff in
the 8–12 Å range. We choose cutoffs of 8.5 and 10 Å for
most of this work, but in some cases complement the data
with a cutoff by the data without a cutoff since it results in
simpler, more easily analyzed behavior.

It is important to recognize the distinction between the
residue contact network and the Delaunay graph of the tes-
sellated protein. The latter has edge lengths equal to the
physical distances between residues. It is a geometric or spa-
tial �28,32� graph, one which is by its nature explicitly un-
derstood to be embedded in a low-dimensional Euclidean
space. In the case of a protein structure, the Euclidean space
is obviously three dimensional and an example Delaunay
graph is shown in Fig. 1. On the other hand, the contact
graph is not a geometric graph but a relational graph �32� and
is obtained from the Delaunay graph of the tessellated pro-
tein by setting all edge lengths equal to 1. Such a graph can
also be embedded in a Euclidean space; however, a space of
more than three �possibly significantly more than three� di-
mensions will be required in general �40�.

II. EXPERIMENTAL METHODS

Several data sets of real proteins and artificial structures
were compiled and Delaunay tessellated using the software

developed by Zhibin Lu and the QHULL program �41�. The
tessellated structures were then turned into networks or ad-
jacency lists from which L, C, and Bv were calculated for
further analysis. The tessellation software requires coordi-
nates for all carbon � atoms �C�’s� without gaps. Therefore,
in the case of artificial structures, only C� coordinates were
generated. In the case of real proteins, typically only about
two thirds of Protein Data Bank �PDB� x-ray structures �42�
can be Delaunay tessellated, mostly due to missing C� co-
ordinates.

The first data set consisted of the x-ray structures of 1364
nonhomologous protein chains obtained from the PISCES
web server �43�. They had no gaps in the C� coordinates,
resolution �2.2Å, crystallographic R factor �0.23, and
maximum pairwise sequence identity �30%. The chains
from multimeric proteins were Delaunay tessellated in isola-
tion from the other chains. This set will be abbreviated as
1364culled. The second was a set of 1364 simple computa-
tionally generated random polymers. Each consisted of a
chain of N points with successive points separated by
3.83 units �typical C�-C� distance in real proteins in ang-
stroms�. The chain meandered in random directions subject
to two constraints: it could not self-intersect and was con-
fined to a sphere of diameter 7.177N1/3+2 in order to ap-
proximately match the size and shape of globular proteins.
There was one such random polymer in the set for each real
structure in 1364culled and it had the same number of resi-
dues as the real protein. This second set will be abbreviated
as random strand. Obviously, unlike its corresponding real
protein, each member of random strand had no secondary
structure. A third data set consisted of 101 computationally
generated, perfectly straight � helices with 5.4 units per turn,
a helix diameter of 4.6 units, and a separation of monomer i
and i+1 of 3.83 units. The lengths of the helices ranged from
50 to 550 residues. The third set will be abbreviated as arti-
ficial helix. A fourth set consisting of sparse, connected, ran-
dom graphs was also generated. Again, there was one mem-
ber of this set for each real structure in 1364culled and it had
the same number of residues N as the real protein. Residue
pairs were connected with probability p equal to the total
number of edges in the real protein divided by N�N−1�. This
set will be abbreviated as random network.

The first experiment consisted of computing and fitting C,
L, and Bv for the data sets listed above. Second, Fourier
spectra were computed on the betweenness profiles for struc-
tures from these data sets to look for periodicity, and identify
possible closed loops. Last, C and L were computed for sev-
eral native or decoy sets to determine if native and non-
native structures can be discriminated based solely on their
contact network properties.

FIG. 2. The mean clustering coefficient, de-
gree, and characteristic path length as a function
of edge length cutoff for three representative
PDB protein structures.
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III. RESULTS

A. Are inter-residue contact networks small world?

We measured the mean clustering coefficient as a function
of the number of residues for 1364culled �Figs. 3�a� and
3�b��. The mean number of residues in 1364culled is about
230 and the mean degree �with 10 Å cutoff� is about 10. The
observed mean clustering coefficient of 0.51 is significantly
larger than that expected for a random graph, k /N=0.043,
and is in the small world range. The plots for random strand
are very similar to those of 1364culled. With the exception of
the artificial-helix set with a 10 Å cutoff, for all tessellation
derived contact networks considered here,C scaled roughly
as N−3/4. For the artificial-helix set with a 10 Å cutoff, C
scaled as 1/N. In all cases, C asymptotically approaches a
nonzero value for large N �Figs. 3�a� and 3�b��. The inverse
scaling of C with N for roughly spherical point sets makes
intuitive sense. A plot of N versus the ratio of the number of
surface simplices �ones with unshared faces� to buried sim-
plices looks similar to Figs. 3�a� and 3�b�, flattening out at
about N=300. A point on a surface face will not be sur-
rounded by neighbors while a point in a buried simplex will.
Neighbors on opposite sides of a point are unlikely to be
neighbors of each other; therefore surface points will have
higher clustering coefficients than buried points and the av-
erage C will be greater for point sets with a larger fraction of
surface simplices. With a 10 Å cutoff, the inverse scaling of
C with N for artificial helices is also understandable. In the
interior of the helix each residue is in contact with the four
residues that precede it and the four that follow and the con-
nectivity patterns between these neighbors are always the
same. The clustering coefficients Cint of all interior residues
are therefore the same. The four residues at the N-terminal
and C-terminal ends have fewer neighbors and they are more
interconnected; hence their clustering coefficients Cend are
larger. In the limit of infinite length, the average clustering
coefficient for the whole helix will go to asymptotically to
Cint.

The value of L as a function of the number of residues
both with and without a 10 Å edge cutoff is shown in Figs.
4�a�–4�f� for 1364culled, random strand, and artificial helix.
Note that there is a steeper line of data points above and to
the left of the main body in the plot of L vs N in Fig. 4�a�—
small proteins for which L scales differently than the rest.
Such outliers are absent in the plot of L vs N with no cutoff
and also absent in plots for random strand, which have no

secondary structure. The steep line consists of small proteins,
like, e.g., 1n7sC belonging to the SCOP �44� classes coiled
coil and all �, that contain extended helices. The set of out-
liers between the main high density area of data and the steep
line in the left part of 1364culled plot are mostly all � and all
�, proteins. Structures from this set include, e.g., 1kx5B �all
� with compact core and large extended loops�, 1ospO �all
�, not compact consisting of a big flat � sheet�, and 1qfhA
�all �, with two compact cores connected by a length of main
chain�.

The histogram of simplex edge lengths and inter-residue
separation in primary sequence for random helix in Fig. 5
offers some explanation for the different trends in Figs.
4�a�–4�f�. With a 10 Å cutoff, the ith residue in a long,
straight helix is joined by edges to residues i±1, i±2, i±3,
and i±4 and therefore helices are just one-lattices with
k=8 �one-dimensional lattices with nodes connected to their
four nearest neighbors on either side� �30�. Without the cut-
off, the ith residue has additional connections to residues
much further away in primary sequence. These long range
edges act like the random rewiring in the Watts-Strogatz
model �30� and the plots of L vs N are qualitatively different

FIG. 3. Clustering coefficients for 1364 nonhomologous struc-
tures from PDB with and without 10 Å simplex edge length cutoff.

FIG. 4. Characteristic path length for contact graphs for
1364culled �top�, random strand �middle�, and artificial helix �bot-
tom� with a 10 Å simplex edge length cutoff �left� and with no
cutoff �right�.
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for the two cases: for Lcutoff�N the networks behave like
one-dimensional �1D� lattices whereas for Lno cutoff�N the
networks have small world character �Figs. 4�e� and 4�f��.
The network of contacts � sheets under a sufficiently short
edge cutoff may approximate a 2D rectangular lattice and it
is a reasonable conjecture that Lcutoff��N; however, we have
not systematically tested that hypothesis in this work. Large
chains with compact, ellipsoidal shape and small compact
chains with low secondary structure content do not display a
sudden qualitative change in the characteristic path length
with decreasing cutoff. A plot of L as a function of the num-
ber of residues, with residue-residue contact defined as sim-
ply C�-C� separation no greater than 8.5 Å instead of our
Delaunay contact condition, looks very similar to Fig. 4�a�.
Therefore, regardless of the precise definition of contact,
with commonly used contact cutoff distances there are at
least two distinct trends in L as a function of N, which com-
plicates analysis. In order to eliminate this complication we
will analyze the results without cutoff then make a bounding
argument to draw some conclusions on the scaling of L with
a cutoff.

The observed path lengths for 1364culled fitted to
ln�N� / ln�k� �small world�, �3N �regular network in 3D�, and
�4N for the data without edge cutoff and the resulting residu-
als are shown in Figs. 6�a�–6�f�. All three models seem to
produce good fits. However, for a legitimate linear least
squares fit, residuals must be independent, homoscedastic,
and normally distributed �45�. Quantile-quantile scatterplots
of the residuals of the three fits versus a normal distribution
�data not shown� indicate that all three sets of residuals are
close to normal in distribution. But as the scatterplots in
Figs. 6�b�, 6�d�, and 6�f� show, ln�N� / ln�k� and �3N have
residuals with a systematic trend and nonuniform variance
and therefore do not satisfy the regression requirements. No
such systematic trend is seen in the residuals for �4N and the
vertical spread is fairly constant. The fit of observed L values
to �4N is therefore the best of the three and we can conclude
that residue contact networks, though close in this regime,
are not strictly small world as defined in the original paper

by Watts and Strogatz �30�. We already know, of course, that
these networks are not regular, since not every residue has
the same number of neighbors, and they are most definitely
not scale-free networks �36�, since the degree distribution
has a well-defined peak and tails and since degrees vary by
only about one order of magnitude �data not shown�. Inter-
estingly however, as mentioned before, C scales as N−3/4,
which is the same scaling as the preferential attachment
model of scale-free networks �46�. L also scales as for ran-
dom strand. However, with no cutoff L, scales as ln�N� / ln�k�
for artificial helix and the corresponding contact networks
are true small world networks while with a 10 Å cutoff they
are one-lattices.

In order to characterize the asymptotic behavior of L of
the contact graphs of real proteins, we generated a second set
of random self-avoiding model polymers which includes
very large structures with up to 10 000 residues. Like the
random-strands set they are computationally generated ran-
dom self-avoiding polymers confined to a spherical volume
of diameter 7.177��3N�+2; however, the number of residues
and the sequences do not correspond to real proteins. There
is a strong correlation �r=0.997� between the path lengths L
from 1364culled and L for the corresponding structures from
random strand. Assuming that the correlation continues to

FIG. 5. Histogram of Delaunay simplex edge lengths in tessel-
lations of random helix without edge length cutoff. Numbers above
the bars are separation in primary sequence of the residues joined
by a simplex edge of the length given on the x axis. Since the
helices are perfectly regular repeating structures, the histogram con-
sists of a few extremely narrow peaks, not a continuous distribution.

FIG. 6. Observed characteristic path lengths from 1364culled
with no cutoff fitted to ln�N� / ln�k� �a�, �3N �c�, and �4N �e� and the
corresponding residuals ��b�, �d�, and �f��.

GRAPH THEORETIC PROPERTIES OF NETWORKS¼ PHYSICAL REVIEW E 73, 041925 �2006�

041925-5



hold for N�1200, we can compute an approximate value of
L for very large proteins, much larger than any real ones
available in the PDB, by simply generating a suitably large
random self-avoiding model polymer and computing its
characteristic path length. We have done this for N in the
range 100 to 10 000. The data were fitted as before and again
analysis of residuals shows, that L��4N gives the best fit.

Returning to the case where we impose an edge cutoff,
consider the ratio R=Lprox cutoff /Ltess no cutoff, where Lprox cutoff
is the characteristic path length of the contact network de-
fined by simple proximity �C� separation �8.5Å� and
Ltess no cutoff is the path length of the corresponding Delaunay
tessellation derived contact graph with no edge cutoff.
Analysis of the 1364culled data shows that the value of R
varies considerably for small proteins, but in the limit of
large N it tends toward about 1.5 and is never less than 1 for
any value of N. We have therefore Lprox cutoff�Ltess no cutoff

and Ltess no cutoff�O��4N��O(ln�N� / ln�k�). So it must follow
that Lprox cutoff�O(ln�N� / ln�k�), therefore residue contact
networks with cutoffs like those described by Vendruscolo et
al. �8�, are also not strictly small world. Finally, since the set
of simplex edges connecting nodes in a residue contact
graph under a cutoff is a subset of the set of edges with no
cutoff, there cannot be a minimum path in the former that is
not in the latter. It must therefore also be true that
Ltess cutoff�Ltess no cutoff�O��4N��O(ln�N� / ln�k�), where
Ltess cutoff is the path length of the Delaunay tessellation de-
rived contact graph with an edge cutoff. Hence tessellation
derived residue contact graphs under any cutoff cannot be
strictly small world either.

This conclusion agrees with two previous observations.
First, Newman has speculated that some networks classified
as small world could be “almost regular” lattices in high
dimensions �35�. With L�N1/d and d�3, L would be a
slowly increasing function of N and with C	k /N it would
be difficult to distinguish from the small world case. And
indeed we have shown in forthcoming work that Delaunay
contanct networks under no cutoff are effectively four-
dimensional objects, which is why L��4N. Second, Watts
has shown that only those contact graphs corresponding to
geometric graphs with heavy right tailed edge length distri-
butions can display small world behavior �32�. In other
words, geometric graphs that have a relatively small fraction
of edges with length on the order of the diameter D of the
graph �including those with a fixed edge cutoff r�D� cannot
have corresponding small world contact graphs. Even with-
out an edge cutoff, the Delaunay graphs of 1364culled do not
have such a heavy tailed edge length distribution �Fig. 7� and
therefore the corresponding contact graphs should not be ex-
pected to be small world.

The distinction between small world and almost small
world we have drawn here is probably not of practical im-
portance for small N, as, for example, when N is the number
of residues in a single globular protein chain. The contact
networks will have small L and large C, i.e., small world
character, so that they will be almost indistinguishable from
true small world networks, which by definition must have a
particular form for the scaling of L. However, if instead of
constructing contact networks for residues, we constructed

them for an all-atom representation of a protein or a solvated
protein, N might conceivably go up by a large enough factor
to show discernible non-small-world features.

B. Betweenness

Results reported earlier in the literature indicate that high
betweenness residues may participate in important contacts.
For example, Vendruscolo et al. �8� have reported that high
betweenness residues play an important role in the folding
nucleus of model transition state structures, and that some of
these contacts are preserved in the native structure �8�. Sha-
khnovich et al. have identified “kinetically important” posi-
tions in a lattice model and a real structure by finding the
positions with low sequence entropy in an alignment of a
large number of sequences with high sequence-structure
compatibility score when threaded onto the structures
�47,48�—a method that does not use the network derived
quantities we discuss here. Their model structure was a chain
of 48 residues on a 3
4
4 lattice and the real protein was
chymotrypsin inhibitor 2 �CI2�. The sequence-structure com-
patibility score was that of Miyazawa and Jernigan �49�. We
have calculated betweenness profiles for both. In the real
structure the contacts were defined using Delaunay tessella-
tion, and since a rectangular lattice cannot be tessellated un-
ambiguously, we simply define contacts of a site in the lattice
model with its north, south, east, west, up, and down neigh-
bors �no periodic boundary�. The four residues in the model
identified as kinetically important have the highest between-
ness of all 48 in the model structure. Residues A35, I39, L68,
I70, and I76, identified as kinetically important in CI2, have
betweenness in the top 15% of all residues in the PDB struc-
ture 2ci2 under an 8.5 Å edge cutoff.

The betweenness of two selected structures calculated
with a 10 Å cutoff is plotted in Figs. 8�a� and 8�c�. Though
noisy, the plots show some periodicity. Fourier power spectra
for these structures were calculated and plotted in Figs. 8�b�
and 8�d�. Notice that the largest peaks correspond to a period
of 20–40 residues. In order to study the properties of the
betweenness for large numbers of structures, the following
procedure was used.

FIG. 7. Histogram of Delaunay edge lengths in tessellations of
1364culled without edge length cutoff.
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�1� The set of structures was broken into six different
categories according to length: 1–100, 101–200, 201–300,
301–400, 401–600, and 601–1200 residues.

�2� Power spectra for all structures in each group were
generated.

�3� The power spectra were binned with a bin width of 0.1
residue.

�4� Since the peaks occur at noninteger values N /q, where
q=1,2 ,3. . . and N is the sequence length and hence there are
far more small period components than large period, all the
binned spectra from a category were summed and then nor-
malized by the number of terms in the sum for that bin; the
resulting profile was then smoothed over a window of five
residues.

Figures 9�a�–9�f� and 10�a�–10�f� show summed, binned,
and smoothed spectra for the 1364culled and random-strand
sets. Spectra for random network �not shown� do not have
any well-defined peaks. Both the random-strand and
1364culled sets have well-pronounced peaks, albeit broad
ones. However, the peak for random strand moves to the
right with increasing length of the random polymer whereas
for real structures it remains at about 30 residues.

The peak in the summed betweenness spectra is likely
related to the peak at about 27 residues in the histogram of
main chain separation for residue pairs with C�-C� distance
less than a contact cutoff of 10 Å, reported by Berezovsky
et al. �50–52� which is also invariant with respect to protein
length. In this series of papers �50–52� the authors have de-
scribed a peak at 22–32 residues in the histogram of se-
quence separation for C�-C� contact pairs. They define con-
tinuous stretches of 22–32 residues with the ends separated
by less than 10 Å as closed loops. Their definition permits
loops to overlap by up to five residues. If two putative loops

overlap by more than five residues, the one with the smaller
C�-C� distance between its end residues is classified as a
loop, the other is not. The loops typically cover about two-
thirds of a protein sequence and are reported to have no
preference for any class of secondary structure. Based on
results from polymer physics, it has been suggested that
22–32 residues is the loop size that forms most readily in the
unfolded state and such loops form first, creating folding
nuclei which persist into the folded state �50–52�.

Figures 11�a�–11�c� show the loops along with Kyte-
Doolittle hydrophobicity �53�, betweenness, and a four-body

FIG. 8. Betweenness as a function of residue number and the
Fourier spectrum of this betweenness profile in the Delaunay tes-
sellations of the PDB protein structures 1191 �top� and 2mnr �bot-
tom�, both with a 10 Å edge cutoff.

FIG. 9. The set of betweenness Fourier spectra from 1364culled
was broken into six categories according to protein length: 1–100
residues �a�, 101–200 residues �b�, 201–300 residues �c�, 301–400
residues �d�, 401–600 residues �e�, 601–1200 residues �f�. The spec-
tra were binned in units of 1 /10 residue and then the power was
summed for all proteins in that category for each of the six catego-
ries. As Fig. 8 shows, the Fourier peaks are not evenly spaced, so
bins covering high frequency components will contain many more
contributions than bins covering low frequencies. To compensate,
the sum from each bin was then normalized by the number of dif-
ferent proteins with spectral components that contributed to the sum
in that bin. Finally, the resulting six profiles were smoothed over a
five residue window. The medians occur at periods of 17.7, 26.5,
33.0, 37, 42.9, and 30.6 residues for �a�–�f�, respectively.
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tessellation derived structure-sequence compatibility score
�13� �described briefly in the introduction� all smoothed over
a seven-residue window for three structures analyzed by Be-
rezovsky et al. �50�. It is apparent from the plot that loop
ends tend to occur at local maxima in betweenness and hy-
drophobicity and at positions where the four-body potential
is positive �with this potential highly compatible sequence
structure pairs have positive scores�.

We have modified slightly the definition of loop intro-
duced by Berezovsky et al. by �1� not allowing loop overlap
for the sake of simplicity of analysis, and �2� requiring that a
Delaunay simplex edge no longer than 10 Å joins two termi-
nal residues which define the loop. The modified loops,
which we will refer to as BGTD loops �for Berezovsky,
Grosberg, Trifonov, and Delaunay�, correspond well to the
loops found under the unmodified definition in a number of
representative structures analyzed previously �50�. We have
compiled statistics on the 6536 BGTD loops in the

1364culled set to test the observations based on the small set
of three structures shown in Figs. 11�a�–11�c�. As previously
reported, residues at the ends of the loops tend to be hydro-
phobic �52�, but charged and polar residues also occur at
loop ends and glycine, cysteine, tryptophan, and tyrosine are
over represented if hydrophobicity were the sole factor
�Table I�. Table II shows that residues at the ends of these
loops have betweenness and four-body potential values in the
upper one-third of all residues in the protein. The mean
Kyte-Doolittle hydrophobicity value of loop ends is also
typically in the top 30% of all residues.

Figures 11�a�–11�c� show that in most cases the loop ends
occur near but not necessarily exactly at local maxima of the
betweenness plot. Therefore, we have computed the primary

FIG. 10. The set of betweenness spectra from 1364 computa-
tionally generated random strands broken into six categories ac-
cording to length. The spectra were binned, summed, and smoothed
in the same way as in Fig 9. The medians occur at periods of 15.7,
28.5, 38.0, 42.7, 44.0, and 50.5 residues for �a�–�f�, respectively.

FIG. 11. Closed loops of Berezovsky et al. �dumbbells on top
with loop end residues as circles� plotted with Kyte-Doolittle hy-
drophobicity �top profile�, betweenness �middle profile�, and tessel-
lation based four-body 3D-1D sequence-structure compatibility pro-
file �bottom profile� all smoothed over a seven-residue window. The
plots are for the PDB protein chains 7timA �top�, 1i1b �middle�, and
256bA �bottom�.
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sequence separation between each residue in 1364culled and
the position with the maximum values of betweenness and
potential in a window of size 21 centered on the residue.
Table II shows that loop ends tend to be closer to such local
maxima than about two-thirds of all residues. The high po-
tential score of loop ends indicates they are important to
protein stability �21� and the high betweenness at the ends of
ubiquitous �30 residue loops explains the persistent peaks at
�30 residues in the summed Fourier spectra. Figures
11�a�–11�c� also indicate that hydrophobicity, four-body po-
tential, and betweenness tend to have local maxima in the
same places. However, the pairwise correlations between
them are not strong �Table III�, so it can be suggested there is
information in each profile not contained in the others.

To analyze the correlations in the betweenness values for
the residues in contact, the residues from four structures ana-
lyzed by Berezovsky et al. �50� were divided into three equal
groups of high, intermediate, and low betweenness. The
edges joining residues from different combinations of groups
were then counted �high-low, high-intermediate, high-high,
etc.�. Table IV shows that high and low betweenness residues
preferentially form contacts within their respective groups.

For the structure 16pk, Fig. 12 shows the contacts defin-
ing all the overlapping putative loops, of which the BGTD
loops are a subset. Notice these contacts are not uniformly
distributed along the sequence, and this is typical of other
structures as well. Instead, there are pairs of contiguous
groups of residues separated by �30 with a large number of
contacts between the two groups. For example, the groups
�61–66� and �89–92� have a total of ten contacts between
them and the groups �99–114� and �128–137� have a total of
eighteen. In our modified loop definition presented above as

well as in �50�, such closed loops have been characterized by
a single contact, namely, the one with the smallest C�-C�
distance. However, the difference in C�-C� distance be-
tween the smallest and second smallest contacts in the two
loops considered above is less than half an angstrom. The
choice between overlapping loops with contact distances that
differ by such a small amount is somewhat arbitrary, and as
Fig. 12 shows choosing one contact over another can shift
the position of the closed loop in the sequence by ten resi-
dues or more. It might be better to define closed loops by a
group of contacts or by some aggregate measure of connec-
tivity such as network centrality. For example one could
choose a closed loop from among overlapping candidates by
picking the one defined by a contact between a pair of resi-
dues with the highest betweenness instead of the pair with
the smallest physical separation.

To summarize, our analysis indicates that globular pro-
teins have a number of high betweenness residues which,
also have high values of a residual four-body knowledge-
based potential, and are likely to play an important structural
role. These residues tend to preferentially form contacts with
each other and some of them tend to form the stems of �30
residue closed loops, which are known to play an important
role in forming a folding nucleus. The tessellation approach
can be used to define and analyze these substructures in a
robust quantitative manner.

C. Discrimination between native and decoys with graph
methods

Using the characteristic path length of contact networks,
Dokholyan et al. were able to distinguish pretransition and

TABLE I. Ratios of residue frequencies at N-term and C-term BGTD-loop ends to overall residue frequencies in 1364culled and
correlations of these ratios with Kyte-Doolittle hydrophobicity scores.

A C D E F G H I K L M N P Q R S T V W Y

N end 1.10 1.58 0.67 0.53 1.21 1.35 0.81 1.36 0.64 1.14 1.06 0.71 1.04 0.61 0.83 0.91 0.96 1.36 1.20 1.11

C end 1.23 1.63 0.56 0.47 1.34 1.29 0.93 1.26 0.60 1.18 1.25 0.87 0.89 0.67 0.77 0.89 0.95 1.28 1.13 1.23

Hydroph 1.8 2.5 −3.5 −3.5 2.8 −0.4 −3.2 4.5 −3.9 3.8 1.9 −3.5 −1.6 −3.5 −4.5 −0.8 −0.7 4.2 −0.9 −1.3

Correlation of N term loop end frequencies with Kyte-Doolittle hydrophobicity scores: 0.823

Correlation of C term loop end frequencies with Kyte-Doolittle hydrophobicity scores: 0.817

TABLE II. Mean betweenness and potential quantiles of ends of nonoverlapping loops of length 22–32
residues closed by the shortest Delaunay edge �BGTD loop� and of all putative loops of length 22–32
residues closed by Delaunay edges up to 10 Å for 1364culled. Betweenness and four-body KB potential are
unsmoothed. The distance to max is the distance from the loop end residue to the maximum value in a
21-residue window centered at the loop end. Loop ends therefore tend to have betweenness and potential in
about the top one-third of all residues and are closer to local maxima in betweenness and potential than about
two-thirds of all residues.

Betweenness
quantile

Distance to
max quantile

Potential
quantile

Distance to
max quantile

BGTD-loop ends 69.5 35.1 66.6 40.1

Ends of all putattive closed
Loops of 22–32 residues

69.3 36.9 67.5 40.6
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post-transition structures—hypothetical folding intermedi-
ates that live along the reaction coordinate on either the non-
native or native side of the transition state �9�. An obvious
related question is whether native or close to native confor-
mations have different contact network properties than mis-
folded conformations.

To test this, we computed the characteristic path length L,
mean clustering coefficient C, and mean degree K for a set of
proteins for which structure decoys are available. We have
used structures from four sets of the multiple decoy section
of the Decoys’R Us website �54�. Decoys from the hg-
structal sets are globins and have been built by comparative

TABLE III. Correlations between four-body knowledge-based potential, Kyte-Doolittle hydrophobicity,
and network properties for all residues in 1364culled �betweenness, knowledge-based potential, and hydro-
phobicity smoothed over a seven-residue window�.

Clust. coef. Hydrophobicity Degree Path length Potential

Betweeness −0.443 0.172 0.429 −0.418 0.196

Clust. coef. −0.270 −0.868 0.259 −0.201

Hydrophobicity 0.335 −0.112 0.332

Degree −0.271 0.256

Path length −0.0987

TABLE IV. The counts of Delaunay edges �10 Å cutoff� connecting high, intermediate, and low between-
ness residues for four selected structures tested against a null hypothesis with �2 tests. High betweenness
residues tend to have a higher degree than medium, which in turn tend to have a higher degree than low
betweenness residues. Therefore a null with all interclass contacts equally probable is not adequate. The
fraction of edges impinging on each class is computed from the real tessellated structure. The expected
frequencies in the null are then taken to be the products of these fractions. In parentheses are the factors by
which the actual counts differ from the null.

1i1b �151 residues, 801 simplex edges�
Top 33% Middle 33% Bottom 33%

Top 33% 196 �1.31�213 �0.93� 90 �0.56�
Middle 33% 81 �0.92� 157 �1.27�
Bottom 33% 64 �1.45�

�2=67.55, p value�7.48
10−14

1thbA �141 residues, 750 simplex edges�
Top 33% Middle 33% Bottom 33%

Top 33% 177 �1.44� 189 �0.91� 65 �0.42�
Middle 33% 89 �1.02� 144 �1.11�
Bottom 33% 86 �1.79�

�2=109.48, p value�2.2
10−16

256bA �105 residues, 550 simplex edges�
Top 33% Middle 33% Bottom 33%

Top 33% 127 �1.38� 147 �1.02� 49 �0.40�
Middle 33% 61 �1.09� 83 �0.86�
Bottom 33% 83 �2.08�

�2=107.47, p value�2.2
10−16

7timA �247 residues, 1437 simplex edges�
Top 33% Middle 33% Bottom 33%

Top 33% 371 �1.47� 329 �0.81� 136 �0.46�
Middle 33% 185 �1.14� 268 �1.14�
Bottom 33% 148 �1.74�

�2=209.83, p value�2.2
10−16
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modeling using other globins as templates with the program
segmod �54,55�. Decoys from the fisa set are small, �-helical
structures constructed from fragments of unrelated protein
structures with similar local sequences using a simulated an-
nealing procedure �56�. Decoys from the lmds set were de-
rived from the experimental secondary structures of ten
small proteins that belong to diverse structural classes. Each
decoy is at a local minimum of a “handmade” energy func-
tion �54�. The 4state-reduced set contains decoys for small
proteins and the C� positions for these decoys were gener-
ated by exhaustively enumerating ten selectively chosen resi-
dues in each protein using a four-state off-lattice model �57�.

Table V shows the rank of the native in a sorted list of the
native plus decoys for C, L, and K under three edge length
cutoffs. One can see that certain of these network parameters
can, to some extent, discriminate native from decoy. For ex-
ample, for the 4state-reduced set, C6.5, the mean clustering
coefficient under a 6.5 Å cutoff, of the native tends to be
greater than that of the decoys as does Linf the mean charac-
teristic path length with no cutoff. For the fisa set, C8.5, L6.5,
and L8.5 all strongly tend to be lower for native than for
decoys. For the lmds set, C8.5 and L6.5 tend to be lower for
the native and K6.5 and K8.5 tend to be higher. For hg-structal,
C8.5, L6.5, and Kinf all tend to be lower for native than for
decoys, but the trend is not as strong as with the other three
sets.

Because these decoy sets were constructed by quite dif-
ferent means, it is not unreasonable that the network proper-
ties of decoys relative to the native should be different for
different sets. It is interesting to note that C, L, and K seem
to have the most discriminatory power with either no cutoff
or a short cutoff �6.5–8.5 Å�. Cutoffs in the intermediate
range �10–15 Å� do not work as well �data not shown�. With
no cutoff, connections between widely separated surface
residue are included in the contact network. With a very
short cutoff, the network consists mostly of connections be-
tween residues in the core, which may shed some light on the

trends in Table V. For example, native structures in the lmds
sets tend to have high K8.5 and low C8.5 which means core
residues in the natives tend to be surrounded by more neigh-
bors than in decoys.

For the majority of structures, the native is systematically
in the top or bottom 50% of the decoy/native set sorted on
one of these discriminatory network parameters. Therefore
one can usually eliminate half the decoys as “non-native”
based on contact network criteria with no reference at all to
an amino acid dependent energy function. One can be more
restrictive by paring the set of decoys down to the short list
of structures in the top or bottom 50% for both of two dis-
criminatory parameters. For example, Table V shows that of
the 631 structures in the 1ctf 4state-reduced decoy set, 191
�30%� of them have both C6.5, and Linf in the top 50th per-
centile and that the native is one of these structures. For the
hg-structal set, such a two-part test does not work as well as
with the other sets, but still succeeds in 12 out of 26 cases,
significantly above �p�0.05� the expected number of 6.5
successes given the null that the native is equally likely to
have high or low rank in a sorted list, and that the pair of
network parameters are independent �which is not strictly
true from Table III�.

The four Decoy’s R Us sets used here are too small and
too biased toward small and �-helical proteins to draw any
strong general conclusions; however, our results suggest that
native protein structures may have specific contact network
properties that can be used to distinguish them from many
decoys. It should also be noted that one can use the geomet-
ric properties of the tessellations of decoy and native struc-
tures, still ignoring the amino acid sequence, to discriminate
decoy from native more effectively than with contact net-
work parameters �this work is currently in preparation for
publication�.

IV. CONCLUSIONS

We have applied graph theory and the theory of complex
networks to the analysis of various protein and proteinlike
models where the polymer is represented by a network of
contacts between the residues defined through the Delaunay
tessellation. We have shown that these protein contact net-
works have small world character, but in several respects
deviate from strictly defined small world networks. Like the
small world networks, protein contact networks are highly
clustered and the average graph distance between the nodes
is short; however, unlike the small world networks, they have
too few long edges that span the entire graph. In addition,
our results suggest that networks formed by native structures
and by most misfolded decoys have different graph proper-
ties, and this can be used as a simple and efficient sequence-
independent filter for the discrimination between the native-
like folds and decoys. Closed loops, consisting of 22–32
consecutive residues, where terminal residues are Delaunay
neighbors are detected in tessellated protein structures. Lo-
cations and lengths of these loops correlate well with those

FIG. 12. All Delaunay contacts between residues separated by
22–32 in primary sequence and with edge lengths �10 Å for the
PDB structure 16pk. The ends of BGTD loops are denoted with
crosses.
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TABLE V. The rank of the native in a sorted list of the native plus decoys for C, L, and K under three edge length cutoffs for each decoy
set. Quantities in bold are used together in a two-part test to generate a short list of more nativelike structures. For the 501 structures in the
1hdd:C set, for example, the intersection of the subset of structures with mean C under an 8.5 Å cutoff in the lower 50th percentile with the
subset of structures with mean L under a 6.5 Å cutoff in the lower 50th percentile gives a short list of 134 structures and the native is in this
short list.

PDB
ID

SCOP
class Length

Decoy
set

Number
decoys

Range
of rms

deviation

C
�6.5 Å�

rank

C
�8.5 Å�

rank
Cinf

rank

L
�6.5 Å�

rank

L
�8.5 Å�

rank
Linf

rank

K
�6.5 Å�

rank

K
�8.5 Å�

rank
Kinf

rank

Size
short
list

Native
in list?

1ctf d 68 4-state 631 1.3–9.1 1 23 49 199 137 70 233 410 383 191 Yes

1r69 a 63 4-state 676 0.9–8.3 37 227 227 632 489 215 89 295 345 184 Yes

1sn3 g 65 4-state 661 1.3–9.1 77 379 644 560 524 41 61 179 551 170 Yes

3icb a 75 4-state 654 0.9–9.4 65 138 62 168 464 234 466 399 208 189 Yes

4pti g 58 4-state 688 1.4–9.3 248 369 466 583 513 508 303 417 307 190 No

4rxn g 54 4-state 678 1.4–8.1 20 47 88 190 201 54 312 481 603 185 Yes

1fc2:C a 42 fisa 501 3.1–10.6 484 501 172 459 491 128 405 7 111 149 Yes

1hdd:C a 56 fisa 501 2.8–12.9 105 415 363 465 490 369 101 28 60 134 Yes

2cro a 64 fisa 501 4.3–12.6 131 477 74 475 496 44 10 5 338 157 Yes

4icb a 76 fisa 501 4.8–14.1 141 501 351 501 501 24 6 1 316 163 Yes

1ash a 147 hg-structal 30 2.2–6.9 27 18 19 29 25 15 6 15 13 9 Yes

1bab:B a 145 hg-structal 30 0.7–6.9 12 22 22 21 22 6 10 8 23 9 Yes

1col:A f 197 hg-structal 30 12.4–30.3 24 30 12 30 30 1 1 1 30 12 Yes

1ecd a 136 hg-structal 30 1.5–6.2 7 19 1 28 9 11 7 15 17 9 Yes

1emy a 153 hg-structal 30 0.7–9.3 3 17 17 26 13 8 6 18 11 8 Yes

1flp a 142 hg-structal 30 1.7–7.2 9 16 4 15 19 3 24 12 29 10 No

1gdm a 153 hg-structal 30 2.6–8.4 26 16 26 11 3 30 1 10 1 8 No

1hbg a 147 hg-structal 30 2.1–6.9 23 21 19 17 10 24 2 9 9 8 Yes

1hbh:A a 141 hg-structal 30 1.0–6.3 8 14 1 21 22 18 8 5 13 8 No

1hbh:B a 146 hg-structal 30 1.0–7.3 27 6 17 10 6 26 21 22 4 9 No

1hda:A a 141 hg-structal 30 0.5–5.8 9 19 14 26 20 22 16 19 26 8 Yes

1hda:B a 145 hg-structal 30 0.5–5.6 20 12 12 8 22 9 13 6 18 10 No

1hlb a 157 hg-structal 30 2.9–7.0 2 6 1 6 5 17 30 29 26 9 No

1hlm a 158 hg-structal 30 3.0–8.7 26 15 23 4 6 24 30 30 16 10 No

1hsy a 153 hg-structal 30 0.8–9.7 5 8 10 17 10 19 9 24 9 7 No

1ith:A a 141 hg-structal 30 1.6–6.1 24 25 1 23 20 27 20 3 7 8 Yes

1lht a 153 hg-structal 30 0.8–9.7 8 18 29 10 13 8 11 17 18 6 No

1mba a 146 hg-structal 30 1.8–7.3 8 27 22 7 7 9 8 9 28 8 No

1mbs a 153 hg-structal 30 1.7–9.3 12 7 12 26 14 4 11 18 21 10 No

1myg:A a 153 hg-structal 30 0.5––9.6 5 22 3 24 15 14 6 16 17 8 Yes

1myj:A a 153 hg-structal 30 0.6–7.9 1 21 19 19 14 15 7 11 21 9 Yes

2dhb:A a 141 hg-structal 30 0.6–6.4 16 26 18 12 21 18 23 19 28 9 No

2dhb:B a 146 hg-structal 30 0.9–7.1 20 10 21 12 7 11 23 24 21 9 No

2pgh:A a 141 hg-structal 30 0.7–6.5 22 25 13 23 13 26 18 21 25 9 Yes

2pgh:B a 146 hg-structal 30 0.8–7.5 30 9 20 21 25 27 18 10 5 8 No

4sdh:A a 145 hg-structal 30 2.3–6.4 25 30 10 24 30 12 4 1 24 10 Yes

1dtk g 57 lmds 216 4.3–12.6 87 169 5 211 208 1 2 1 214 59 Yes

1fc2:C a 43 lmds 501 4.0–8.4 500 496 25 498 498 36 134 1 345 155 Yes

1igd d 61 lmds 501 3.1–12.6 249 460 302 337 179 171 89 214 312 151 Yes

1shf:A b 59 lmds 438 4.4–12.3 13 101 276 435 285 25 2 174 426 113 No

2cro a 65 lmds 501 3.9–13.5 383 501 47 501 501 38 3 1 307 154 Yes

2ovo g 56 lmds 348 4.4–13.4 230 311 147 269 249 119 39 170 251 96 Yes

4pti g 58 lmds 344 4.9–13.2 217 320 250 343 333 208 1 7 198 97 Yes
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defined by other means, however the proposed technique af-
fords a more consistent approach to loop identification. The
systematic analysis of the locations, geometric and composi-
tional features of these loops may provide important insights
into the protein folding and structure.
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